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1. Introduction

The linear acoustic wave propagation in a stationary and inviscid medium is described by the
well-known Helmholtz equation Dp þ k2p ¼ 0; where p is the spatial distribution of a small
perturbation of pressure around a steady state and k ¼ o=c is a given physical parameter.
The numeric errors associated with the solution of the Helmholtz equation with Galerkin-FEM

are related mostly to the parameter k (k-singularity) and to the geometry of the problem
(l-singularity).
Considering O the domain, h the element size, p the element order, pAHpþ1ðOÞ; the exact

solution to Helmholtz equation, and phAS
p
hðOÞ the FEM-solution, the numerical relative error je1j

measured in the H1-seminorm is bounded by je1jpC1ðkh=2pÞp þ C2kðkh=2pÞ2p for oscillating p
with frequency k and a constraint khop: However, numerical results show that je1j estimates are
sharp [1].
The first term of this error expression is the error due to approximation (interpolation error).

This error is under control for constant resolution independent from k and most acoustic finite
element analysis are computed by keeping kh constant. This is called the ‘‘rule of the thumb’’
which determines the minimal mesh refinement of a wavelength and, for example, according to
SYSNOISE users manual [2], five or six elements are sufficient for linear elements ðp ¼ 1Þ:
The other term is the pollution error. The energy norm of the error for FEM-solutions of the

Helmholtz equation with khpb (constant) contains a pollution term, around ðkhÞ2p: For
reliability of the FEM results, it is hence necessary and sufficient to constrain the pollution error.
Another interesting question is the phase lag. Regular FEM-solutions with kh oscillating

frequency display a phase difference in relation to the exact solution. The pollution term error
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order is about the same as the phase angle error which can be estimated by jk� khjp
kCðpÞðkh=2pÞ2p for kho1; see Ref. [3].
The l-singularity only appears on eigenfrequencies of interior acoustic undamped models, for

which the system matrix is singular and the error is infinite.
For two-dimensional problems where the phase lag control is much more complex, the h-

refinement is an interesting option used with some success; see Refs. [4,5], for example. According
to Ihlemburg et al. [1], Galerkin FEM-solutions to two-dimensional Helmholtz equation show the
same error behavior as one-dimensional solutions.
The transmission loss (TL) estimate for automotive mufflers are the main goal of this work.

First, a one-dimensional problem is studied with two Neumann boundary conditions similar to
the improved four-pole parameter method boundary conditions used for TL evaluations. The
error analysis is performed for linear, quadratic and cubic elements. The errors for the finite
element solutions are evaluated with the nodal values of the sound pressure and with the phase lag
angle. Interesting results are observed for the phase lag errors related to even and odd resolutions
(elements/wavelength).
The final application is performed with TL calculations for a muffler with inlet and outlet ducts

in the frequency range from 0 to 3000 Hz: The numeric results obtained by the FEM show
excellent proximity with the experimental results available in the literature and some differences
close to l-singularity are observed when compared to BEM-solutions. Finally, to check the
reliability of the results around eigenfrequencies (l-singularity) the reciprocity relation is used as a
FEM-solution quality parameter.

2. One-dimensional problem

The local error analysis is performed for linear ðp ¼ 1Þ; quadratic ðp ¼ 2Þ and cubic ðp ¼ 3Þ
finite elements using the Galerkin FEM-solutions for the one-dimensional problem

d2pðxÞ
dx2

þ k2pðxÞ ¼ 0 80pxpL ð1Þ

with boundary conditions (Neumann)

dpð0Þ
dx

¼ 1;
dpðLÞ
dx

¼ 0; ð2Þ

whose exact solution, pðxÞ ¼ ð1=kÞ½sinðkxÞ þ cosðkLÞ=sinðkLÞ 	 cosðkxÞ
; has l-singularity in
kL ¼ np; n ¼ 1; 2;y: It is important to remember that the boundary conditions are the same used
in the improved four-pole parameter method of Kim and Soedel [6–8]; Wu et al. [9], and the
eigenfrequencies depend on the L length.
The finite element approximation for phð0Þ is one of the principal variables to determine the

constants of the improved four-pole parameters method. Fig. 1 shows the nodal error, jej ¼
j1� phð0Þ=pð0Þj; for k ¼ 60 and two different lengths, L1 ¼ 9:99999=k (near l-singularity) and
L2 ¼ 1:12=k (without l-singularity). It can be noticed that for length L2 the asymptotic behavior
of error happens at around rate 2p (2.027, 3.937 and 5.948 for p=1, 2 and 3, respectively) and that
for length L1 the same convergence rate is observed (3.912 and 6.012 for p ¼ 2 and 3,
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respectively); however, the asymptotic convergence only occurs for elevated n (elements/
wavelength) values.
Other interesting result is the phase lag that is associated with the pollution error. The

numeric results for the phase angle error, jej ¼ 100jk� khj=k; are shown in Fig. 2 for k ¼ 60
and L ¼ L1: All the solutions with n odd or even linear elements present the same convergence
rate of about 2p (1.987 for odd and 1.991 for even). For the quadratic and cubic elements
this behavior is different and the FEM-solutions convergence rates are 2p for even n (4.001 and
6.012 for p ¼ 2 and 3, respectively) and 2p � 1 for odd n (3.001 and 4.981 for p ¼ 2 and 3,
respectively).

3. Bi-dimensional application

In this application the FEM is applied to obtain the TL, for the expansion chamber with
extended inlet/outlet ducts illustrated in Fig. 3. The improved four-pole parameter method is used
to obtain the TL and in this method the pressures and velocities in the muffler inlet, ðp1; u1Þ; and
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Fig. 1. Convergence for k ¼ 60; jej ¼ j1� phð0Þ=pð0Þj: - - -, p ¼ 1; —, p ¼ 2; – –, p ¼ 3; m; L1; n; L2:
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muffler outlet, ðp2; u2Þ; can be related by the equation

p1

p2

" #
¼

A� B�

C� D�

" #
u1

�u2

" #
; ð3Þ
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Fig. 2. Phase angle error near to l-singularity, jej ¼ 100jk� khj=k: —, p ¼ 1; - - -, p ¼ 2; — —, p ¼ 3; m; n even;

n; n odd.

Fig. 3. Expansion chamber with extended inlet/outlet ducts.

R. Barbieri et al. / Journal of Sound and Vibration 276 (2004) 1101–11071104



where A�; B�; C� and D� are the improved four-pole parameters associated with the well-known
four-pole parameters (four-pole parameters method) by A ¼ A�=C�; B ¼ B� � A�D�=C�; C ¼
1=C� and D ¼ �D�=C�:
The main advantages of using this method to evaluate TL with FEM are based on the fact that

all the calculations are performed with real variables, the final system of equation is just solved
once and the constants A�; B�; C� and D� are obtained without velocity calculations (FEM-
solutions post-processing).
The geometrical data for this muffler are the same as the ones used by Selamet and Ji [10]:

L ¼ 28:23 cm; d ¼ 4:86 cm; D ¼ 15:32 cm; L1 ¼ 13:1 cm; L2 ¼ 6:1 cm and wall thickness, t ¼
0:2 cm: The physical parameter, sound speed, used in numerical evaluations is 346:1 m=s:
The expansion chamber is modelled using 5352 (11,073 nodes) quadratic axisymmetric

triangular finite elements and the mesh refinements are shown in Fig. 4. The coarse size h for the
finite element mesh is around 0:4 cm (almost 29 elements per wavelength at approximately
3000 Hz) and some calculated errors are expected to be around the l-singularity, see Fig. 1.
In Fig. 5 the finite elements results are compared to the data obtained experimentally and

numerically (BEM) by Selamet and Ji [10]. It is easy to visualize the differences obtained by the
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Fig. 4. Finite element mesh for expansion chamber with extended inlet/outlet ducts.

Fig. 5. Comparative results for the TL of a concentric expansion chamber with extended inlet/outlet: —, GFEM; - - -,

BEM [10]; þ; experimental [10].
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numerical solutions using different methods (BEM and FEM). Around the l-singularity the TL
values present variations near to 10 dB and some phase differences.
According to Selamet and Ji [10] the minor discrepancies between BEM-solution and

experimental results are associated with the neglected viscous effects and the wall thickness of
extended ducts in the numerical model and minor geometrical imperfections in the experimental
setup. However, the numerical solution obtained by using only the Helmholtz equation and the
Galerkin-FEM are very close to the experimental results presented by Selamet and Ji [10].
Comparison with more details of these methods (FEM and BEM) for muffler TL calculations

based on accuracy and computational processing time was performed recently by Bilawchuk and
Fyfe [11]. Using numerical solutions obtained by SYSNOYSE [2] and two other methods for TL
evaluations (the four-pole method and the three-point method) the conclusion is that the FEM is
better suited for this kind of application.
Finally, as seen previously for one-dimensional problems, using only 30 quadratic elements per

wavelength around the l-singularity, some perturbations are expected in the FEM-solutions due
to the singularity in the equation system. In these situations the reciprocity relation, AD-BC; is
used as a parameter to evaluate the FEM-solutions quality. For all frequencies, the AD-BC value
must remain constant and equal to 1; see Ref. [12]. This is verified by the results of Fig. 6, except
near l-singularities.

4. Conclusion

To evaluate the transmission loss, TL, numerically in acoustic mufflers by using the improved
four-pole parameter method, it is necessary and sufficient to use the correct determination of
sound pressure values at the muffler’s inlet and outlet.
It was shown in convergence analyses for one-dimensional problems solved by Galerkin-FEM,

that the determination of the element size has a fundamental importance for the study of
problems governed by Helmholtz’s equation. These results showed that the control of pollution
errors lead to reliable finite elements models. Near the l-singularity the convergence rate of the
phase angle remains similar to 2p for linear element. However, for quadratic and cubic elements
the numeric results show a different convergence rate. For those elements the convergence rate
found is about 2p for even resolution and 2p � 1 for odd resolution.
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Fig. 6. Reciprocity relation AD-BC:
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Finally, the two-dimensional numerical results show excellent proximity to available
experimental results found in literature. Adequate geometric models with correct thickness wall
modelling and mesh refinements near the changes in geometry are fundamental for those muffler
simulations. The reciprocity relation can be used as an FEM-solutions quality parameter, even
when next to the l-singularities.
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